

Page 1 of 4

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME: BSc. in Agricultural Economics and Agribusiness Management Year III

COURSE CODE: AEM 306

TITLE OF PAPER: QUANTITATIVE METHODS FOR AGRIBUSINESS DECISIONS

TIME ALLOWED: 2: 00 HOURS

INSTRUCTION: 1.ANSWER ALL FOUR QUESTIONS

2. EACH QUESTIONS CARRIES 25 POINTS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1. (25 points)

1.1 What is quantitative analysis?

(2 points)

1.2 Find the solution of the equation system

$$7x - y - z = 0$$

$$10x - 2y + z = 8$$

$$6x + 3y - 2z = 7$$
 using Cramer's rule?

(9 points)

1.3 What is input-out put model in economics?

(5 points)

1.4 Consider an economy with two goods, X and Y. The matrix of coefficients and the final demand is given by

$$A = \begin{pmatrix} 0.5 & 0.2 \\ 0.4 & 0.1 \end{pmatrix}$$
 and the demand vector $D = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$

Find the production vector that enables the economy to meet the demand.

(9 points)

Question 2. (25 points)

- 2.1 Given the consumption function C = a + bY (with a > 0; 0 < b < 1)
 - a) Find its marginal function and its average function

(5 points)

- b) Find the income elasticity of the consumption E_{cy} and determine its sign, assuming Y > 0. (5 points)
- c) Show that this consumption function is inelastic at all positive income levels. (3 points)
- 2.2 A firm has the following total- cost and demand functions;

$$C = \frac{1}{2}Q^2 - 3Q + 10$$

$$Q = 25 - p$$

- a. Write out the total-revenue function R in terms of O.
- (3 points)
- b. Formulate the total -profit function Π in terms of Q.
- (3 points)

c. Find the profit – maximizing level of output Q.

(3 points)

d. What is the maximum profit?

(3 points)

Question 3. (25 points)

3.1 Given cost and income functions of a sugar producer

$$C(x) = x^2 + 4x + 40$$

and $I(x) = 3x - x^2$ respectively where x is daily production in tons and I(x) and C(x) are measured in E.

a) For which value of x will the income be maximized?

(4 points)

b) Determine the gross profit and the value of x which will maximize the gross profit.

(4 points)

c) The producer is taxed at a rate of 30% on the value of x for which it is a maximum. Determine his net profit and the value of x for which it is a maximum.

(4 points)

3.2 Calculate the definite integrals.

a)
$$\int_{0}^{1} -x^{2} + 3x + 4dx$$

(4 points)

b)
$$\int_{1}^{1} e^{-2x} dx$$

(4 points)

3.3 If the marginal propensity to save(MPS) is the following function of income, $S'(y) = 0.4 - 0.2 \text{ y}^{-1/3}$, and if the aggregate saving S is nil when income y is 100, Find the saving function S(y) (5 points)

Question 4. (25 points)

4.1 The demand and the supply for a certain product (in hundreds) in terms of its price (in cents) are given by the following equations:

 $D(P) = -x^2 + 11$

(demand)

 $S(P) = x^2 - x + 4$

(supply)

Find a) the consumers surplus

(4 points)

- b) the producers' surplus, when the market is in equilibrium. (4 points)
- Use the Lagrange –multiplier method to find the stationery value of Z and use the bordered Hessian to determine if the stationary value of Z is a maximum or a minimum. Z = 2x y xy, subject to x + y = 7. (9 points)
- 4.3. Use the graphical procedure(isoprofit line or corner point solution) to solve the following linear programming problem

Maximize $Z = 10x_1 + 20x_2$

Subject to $-x_1+2$ $x_2 \le 10$

 $x_1 + x_2 \leq 8$

 $5x_1 + 3x_2 \le 30$ and

 $x_1 \ge 0, x_2 \ge 0.$

(8 points)