

2nd SEM. 2011

page 1 of 4

UNIVERSITY OF SWAZILAND

SUPPLEMENTRAY EXAMINATION PAPER

PROGRAMME: BSc. in Agricultural Economics and Agribusiness Management Year III

COURSE CODE:

AEM 306

TITLE OF PAPER: Quantitative methods for agribusiness decisions

TIME ALLOWED: 2: 00 HOURS

INSTRUCTION: 1.ANSWER ANY FOUR QUESTIONS

2. EACH QUESTIONS CARRIES 25 MARKS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1.

1.1 Use Cramer's rule to find the value of x,y and that solve the following three equations simultaneously.

$$-x+3$$
 y +2 z = 24
x + z = 6
5y - z = 8 (15 marks)

1.2 Consider the situation of a mass layoff (i.e., a factory shuts down)where 3000 people become unemployed and now begin a job search. In this case there are two states; employed(E) and unemployed (U) with an initial vector
x₀ = [E U] = [0 3000]

Suppose that in any given period an unemployed person will find a job with probability 0.9 and will therefore remain unemployed with a probability of 0.1. Additionally, persons who find themselves employed in any given period may lose their job with a probability of 0.3 (and will have a 0.7 probability of remaining employed).

- a. Set up the Markov transition matrix for this problem. (5 marks)
- b. What will be the number of unemployed people after 1 period? 2 periods? (5 marks)

QUESTION 2.

- 2.1 Find the point elasticity of supply ε_s from the supply function $Q = p^2 + 3p$, and determine whether the supply is elastic at p = 4. (5 marks)
- 2.2 Given the input-output matrix

$$A = \begin{pmatrix} 0.4 & 0.7 \\ 0.3 & 0.2 \end{pmatrix} \text{ and the demand vector } D = \begin{pmatrix} 75 \\ 100 \end{pmatrix}$$

Find the production vectors that enable the economy to meet the demands. (8 marks)

2.3 A firm has the following total- cost and demand functions;

$$C = 4Q^3 + Q^2 + 4Q + 40$$

 $Q = 25 - 4p$

a. Write out the total-revenue function R in terms of Q. (3 marks)

b. Formulate the total –profit function Π in terms of Q.

(3 marks)

c. Find the profit – maximizing level of out put Q.

(3 marks)

d. What is the maximum profit?

(3 marks)

Question 3.

3.1 The income and cost functions of a sugar producer are

$$I(x) = 3x - 2x^2$$

and $C(x) = 2x^2 + x + 5$ respectively where x is daily production in tons and I(x) and C(x) are measured in E.

3.11 For which value of x will the income be maximized? (5 marks)

3.12 Determine the gross profit and the value of x which will maximize the gross profit. (5 marks)

3.13 The producer is taxed at a rate of 42% on the value of x for which it is a maximum. Determine his net profit and the value of x for which if is a maximum. (5 marks)

3.2 The demand and the supply for a good both depend upon the price p of the good and the tax rate t:D=f(p,t) and S=g(p,t). For any given value of t, an equilibrium price is a solution of the equation f(p,t)=g(p,t).

Assume that this equation defines p as a differentiable of t. find $\frac{\partial p}{\partial t}$ in terms of the derivatives of f & g (10 marks).

Question 4

4.2 The marginal cost function of a producer in terms of production (P) is given by:

C' (P) =
$$3P + P^2 + 153$$

Where the total cost is in E

If the fixed cost $C_F = E75$, find the total-cost function C(P)? (13 marks)

4.1 Calculate the definite integrals.

4.11
$$\int_{0}^{1} 3x + 3dx$$
 (6 marks)
4.12
$$\int_{0}^{2} x^{2} + 4dx$$
 (6 marks)

Question 5.

5. 1 Use the Lagrange –multiplier method to find the stationery value of Z and use the bordered Hessian to determine the stationary value of Z is a maximum or a minimum.

$$Z = xy$$
, subject to $x + y = 7$. (5 marks)

5.2 The demand and the supply for a certain product (in hundreds) in terms of its price (in cents) are given by the following equations:

$$D(P) = x^2 - 5$$
 (demand)
 $S(P) = x^2 - 2x + 81$ (supply)
Find; a) the consumers surplus (5 marks)

- b) the producers' surplus, when the market is in equilibrium. (5 marks)
- 5.3 Consider the following optimization problem.

Maximize
$$Z = x_1 + 3x_2$$
,
Subject to $2x_1 - x_2 <= 5$
 $x_1 - 3x_2 <= 7$ and $x_1 >= 0$, $x_2 >= 0$.
5.31 Construct the dual problem for this primal problem.
5.32 Solve both the primal problem and dual problem graphically. (5 marks)