

2nd SEM. 2011

page 1 of 5

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME: BSc. in Agricultural Economics and Agribusiness Management Year III

COURSE CODE: AEM 306

TITLE OF PAPER: Quantitative methods for agribusiness decisions

TIME ALLOWED: 2:00 HOURS

INSTRUCTION: 1.ANSWER ANY FOUR QUESTIONS

2. EACH QUESTIONS CARRIES 25 MARKS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Ouestion 1.

1.1 Consider the situation of a mass layoff (i.e., a factory shuts down) where 1200 people become unemployed and now begin a job search. In this case there are two states; employed(E) and unemployed (U) with an initial vector
x₀ = [E U] = [0 1200]

Suppose that in any given period an unemployed person will find a job with probability 0.7 and will therefore remain unemployed with a probability of 0.3. Additionally, persons who find themselves employed in any given period may lose their job with a probability of 0.1(and will have a 0.9 probability of remaining employed).

- a. Set up the Markov transition matrix for this problem. (6 marks)
- b. What will be the number of unemployed people after 1 period? 2 periods? (6 marks)
- 1.2 Given the input-output matrix $A = \begin{pmatrix} 0.3 & 0.4 \\ 0.2 & 0.6 \end{pmatrix} \text{ and the demand vector } D = \begin{pmatrix} 100 \\ 200 \end{pmatrix}$

Find the production vector that enable the economy to meet the demand.

Question 2.

2.1 A firm has the following total- cost and demand functions;

$$C = 1/3 Q^3 - 7Q^2 + 111Q + 50$$

 $Q = 100 - p$

- a. Write out the total- revenue function R in terms of Q. (4 marks)
- b. Formulate the total –profit function Π in terms of Q. (4 marks) c. Find the profit maximizing level of output Q. (4 marks)
- c. Find the profit maximizing level of output Q. (4 marks d. What is the maximum profit? (4 marks)
- 2.2 Find the point elasticity of supply E_d from the supply function $Q = p^2 + 6 p$,

and determine whether the supply is elastic at p = 3. (9 marks)

Question 3.

The income and cost functions of a sugar producer are

 $I(x) = 6x - x^{2}$ and $C(x) = x^{2} + 2x + 33$ respectively where x is daily production in tons and I(x) and C(x) are measured in E.

- 3.11 For which value of x will the income be maximized? (5 marks)
- 3.12 Determine the gross profit and the value of x which will maximize the gross profit. (5 marks)
- 3.13 The producer is taxed at a rate of 33% on the value of x for which it is a maximum. Determine his net profit and the value of x for which it is a maximum. (5 marks)
- 3.2 A manufacturer produces garden chairs at a cost of E20 a chair while his overhead cost is E 3000 a week. From previous experience he knows that he will sell 2000-40x chairs a week if he charges Ex a chair. What must the price be and how many chairs must he sell a week to maximize his profit? (10 marks)

Question 4

4.1 Calculate the definite integrals.

4.11
$$\int_{0}^{1} 3x^{2} + 4x + 2dx$$
 (5 marks)

4.12
$$\int_{0}^{2} \chi^{2} - x + 6 dx$$
 (5 marks)

4.12
$$\int_{0}^{2} \chi^{2} - x + 6 dx$$
 (5 marks)
4.13 $\int_{1}^{\infty} e^{3x} dx$ (5 marks)

4.2 The marginal cost function of a producer in terms of production (P) is given by:

C' (P) =
$$2P + P^3 + 200$$

Where the total cost is in E

If the fixed cost $C_F = E38$, find the total-cost function C(P)?

(10 marks)

Question 5.

5.1 Consider the following differential equation for y(x)

$$Y^{\cdot \cdot} - 2v = e^x$$

5.11 Find the complementary function

(3 marks)

5.12 Find the particular function.

(3 marks)

5.13 Write down the solution to this equation, given the initial condition

$$y(0) = -1$$
 and $y'(0) = 3$

(3 marks)

5.2 Use the Lagrange –multiplier method to find the stationery value of Z and use the bordered Hessian to determine the stationary value of Z is a maximum or a minimum.

$$Z = 3x - y - xy$$
, subject to $x + y = 8$.

(8 marks)

5.3 The demand and the supply for a certain product (in hundreds) in terms of its price (in cents) are given by the following equations:

$$D(P) = -x^2 + 11$$

(demand)

$$S(P) = x^2 - x + 4$$

(supply)

Find; a) the consumers surplus

(4 marks)

b) the producers' surplus, when the market is in equilibrium. (4 marks)

Question 6.

6.1 A firm manufactures two products A and B, the market for each being virtually unlimited. Each product is processed on each of the machines I,II and III. The processing times in hours per item of A or B on each machine are given in the table below.

	I	II	III
A	0.3	0.4	0.2
В	0.24	0.3	0.4

The available production time of the machines I ,II and III is 40 hours,36 hours and 36 hours respectively each week. The profit per item of A and B is E4 and E5 respectively.

The firm wishes to determine the weekly production of items of A and B which will maximize its profit. Formulate this problem as a linear programming problem only. (5 marks)

- 6.2 The outdoor furniture corporation manufactures two products: benches and picnic tables for use in yards and parks. The firm has two main resources: its carpenters(labor) and a supply of redwood for use in the furniture. During the next production period,1200 hours of manpower are available under a union agreement. The firm also has a stock of 5000 pounds of quality redwood. Each bench that outdoor furniture produces requires 4 labor hours and 10 pounds of redwood; each picnic table takes 7 labor and 35 pounds of redwood. Completed benches yield a profit of E9 each ,and tables a profit of E20 each.
 - a) Formulate the decision variables, objective function, constraints? (5 marks)

b) Find the optimal solution. (5 marks)

6.3. Consider the transportation problem having the following cost and requirements table:

Destination

	1	2	supply	
Source 1	30	20	10	
Source 2	40	25	20	
Demand	15	15		

a)Use the northwest corner rule to obtain an initial basic feasible solution.
(5 marks)

b) Use the transportation simplex method to obtain the optimal solution. (5 marks)