

1st SEM. 2009

page 1 of 4

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME: BSc. in Agricultural Economics and Agribusiness Management Year II & III

COURSE CODE: AEM 203

TITLE OF PAPER: INTRO. TO MATHEMATICS FOR ECONOMICS

TIME ALLOWED: 2:00 HOURS

INSTRUCTION: 1.ANSWER ALL QUESTIONS
2. EACH QUESTIONS CARRIES 25 MARKS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

50

Question 1.(25 marks)

1.1 Given the input-output matrix

$$\begin{bmatrix} 0.2 & .05 \\ 0.4 & 0.5 \end{bmatrix}$$
 and demand vector $\mathbf{D} = \begin{bmatrix} 50 \\ 60 \end{bmatrix}$

Find the production vector that will enable the economy to meet the demands?

1.2 Solve the following linear system by using

- a) Gaussian method
- b) Cramer method

$$x + 3y = 1$$
$$x - 4y = 2$$

1.3 The income and cost functions of a sugar producer are

$$I(x) = 64x - x^2$$

and $C(x) = x^2 + 4x + 50$ respectively where x is daily production in tons and I(x) and C(x) are measured in E.

- a) For which value of x will the income be maximized?
- b) Determine the gross profit and the value of x which will maximize the gross profit.
- c) The producer is taxed at a rate of 44% on the value of x for which it is a maximum. Determine his net profit and the value of x for which if is a maximum.

Question 2. (25 marks)

2.1 Calculate the definite integrals.

$$\mathbf{a)} \qquad \int\limits_{0}^{1} 3x + 5dx$$

$$\mathbf{b)} \quad \int_{1}^{2} \ln x dx$$

2.2 The marginal cost function of a producer in terms of production (P) is given by:

C' (P) =
$$2P + P^3 + e^p$$

Where the total cost is in Rand(R).

If the fixed cost $C_F = E100$, find the total-cost function C(P)?

2.3 Suppose that F (Q,K,L) = $Q^3K^2 + L^3 + QKL - 3 = 0$ is given then

find a)
$$\frac{\partial Q}{\partial L}$$
 and $\frac{\partial \hat{Q}}{\partial K}$

b) If K = L = 1 find the values in 2.3a.

Question 3. (25 marks)

- 3.1 Given Q = 100 2p + 0.03 Y, where Q is quantity demanded, p is Price, and y is income, and given p = 20 and y = 3000 Find;
 - a) the price elasticity of demand..
 - b) the income elasticity of demand.
 - 3.2 Consider the following differential equation for y(x)

$$Y'' - 4y = 3e^x$$

- a. Find the complementary function
- b. Find the particular function.
- c. Write down the solution to this equation, given the initial condition y(0) = -1 and y'(0) = 3

Question 4. (25 marks)

4.1 Use the Lagrange –multiplier method to find the stationery value of Z and use the bordered Hessian to determine the stationary value of Z is a maximum or a minimum.

$$Z = x-5y-2xy$$
, subject to $x + y = 3$.

4.2 The demand and the supply for a certain product (in hundreds) in terms of its price (in cents) are given by the following equations:

$$D(P) = -p^2 + 12$$
 (demand)
 $S(P) = 2p^2 + p + 8$ (supply)

Find; a) the consumers surplus

b) the producers' surplus, when the market is in equilibrium.

END OF PAPER