

1st SEM. 2008/2009

page 1 of 3

UNIVERSITY OF SWAZILAND

Supplementary EXAMINATION PAPER

PROGRAMME: BSc. in Agricultural Economics and

Agribusiness Management Year I

BSc. in Agricultural Education Year I

BSc. in Agronomy Year I BSc. in Animal Science Year I

BSc. in Food Science, Nutrition and Technology Year I

BSc. in Home Economics Year I

BSc. in Home Economics Education Year I

BSc. in Horticulture Year I

BSc. in Land and Water Management Year I

BSc. in Textiles Apparel Design and Management Year I

COURSE CODE: AEM 101

TITLE OF PAPER: MATHEMATICS

TIME ALLOWED: 2:00 HOURS

INSTRUCTION: 1. ANSWER ALL QUESTIONS

2.ALL QUESTIONS CARRIES 25 MARKS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1

- a) A line is to be divided into 3 parts in the ratio 3:4:5. If the line is 960cm long find the length of each part?
- b) Factorize $x^2 + 6x + 9$
- c) Suppose a certain species of bees increase in number according to the exponential equation $q = 25 e^{0.4t}$, where t is measured in days. In how many days, correct to the nearest tenth, will there be 500 bees?
- d). Find the solution set of system of simultaneous equation.

$$\begin{cases} 2x - 3y = 8 \\ x - y = 1 \end{cases}$$

 $\begin{cases} 2x-3y=8\\ x-y=1 \end{cases}$ e) Find the solution set of $2x^2+4x-9=1$.

Question 2

- a) Find the solution of exponential equation $3^{x} = 27$
- b) Find the solution set of logarithmic equation. $\log_2^{(x+5)} + 4\log_2^2 = 3$
- c) AC is a diameter of a circle center o and CD is a chord, M is the mid-point of CD. The tangent at A meets MO produced at T. Prove that
 - I) \triangle CMO is similar to \triangle TAO
 - ii) TA. MO = AO. MC

Question 3

a) If $\sin A = \frac{5}{13}$ then find $\cos A$?

b) Two straight line PQ and RS cut at X. If PX = RX and $\langle SPX = \langle QRX, Prove \text{ that } \Delta SPX \equiv \Delta QRX$

c) Given that $y = -2x^2 + 3x + 6$, calculate

i) the gradient of the tangent to the curve of y at the point Where x=-1.

ii) The value of x for which y has its maximum value.

iii) The value of x for which y has its minimum value.

d) In the following fig. AC is parallel to the tangent DE. Prove that

i) \triangle ADC is isosceles;

ii) < ABC = 2 < DAC

Question 4

a .Evaluate the following definite integral;

$$\int_{2}^{5} (x+5) \chi^{3} dx$$

b. Find the inverse of the matrix $\begin{pmatrix} 2 & 7 \\ 4 & 6 \end{pmatrix}$

c. Sketch the graph of the given quadratic equation using the intercepts and the Coordinates of the vertex $y = x^2 - 2x - 1$

$$y = x^2 - 2x - 1$$

END OF PAPER