1st SEM, 2020 / 2021

UNIVERSITY OF ESWATINI

FINAL EXAMINATION PAPER 2021

PROGRAMME:

BSC. ABE

COURSE CODE:

ABE405

TITLE OF PAPER:

SOILS AND FLUID MECHANICS

TIME ALLOWED:

TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: CALCULATOR

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

2

1st SEM. 2020 / 2021

SECTION ONE: COMPULSORY

(40marks) **QUESTION ONE** Discuss the following terms as used in soils and fluid mechanics (10marks) a) Specific weight i) Specific gravity ii) (30marks) Choose the correct answer among the given options; b) Water transported soils are termed Acoline a) Alluvial b) Colluvial c) Dune d) A silty soil gives a positive reaction in ii) Toughness test Dilatancy test b) Dry strength test c) None of the above d) When consolidation of a saturated soil sample occurs, the degree of saturation iii) Increases a) Decreases b) Remains constant c) May increase or decrease A soil has a bulk density of 22 kN/m³ and water content of 10%. The dry density of iv) the soil is a) 18.6 kN/m^3 b) 20.0 kN/m³ c) 22.0 kN/m³ d) 23.2 kN/m³ If the volume of voids is equal to the volume of solids in a soil mass, then the values v) of porosity and voids ratio respectively are 1.0 and 0.0 a) 0.0 and 1.0 b) 0.5 and 1.0 c) 1.0 and 0.5 d) Pascal – second is the unit of vi) Pressure a) Kinematic viscosity b) Dynamic viscosity

1st SEM. 2020 / 2021

- d) Surface tension
- vii) An ideal fluid is
 - a) One which obeys Newton's law of viscosity
 - b) Frictionless and incompressible
 - c) Very viscous
 - d) Frictionless and compressible
- viii) An open tank contains 1m deep water with 50 cm depth of oil of specific gravity 0.8 above it. The intensity of pressure at the bottom of the tank is
 - a) 4 kN/m^2
 - b) 10 kN/m^2
 - c) 12 kN/m^2
 - d) 14 kN/m²
- ix) If the weight of a body immersed in a fluid exceeds the buoyant force, then the body will
 - a) Rise until its weight equals the buoyant force
 - b) Tend to move downwards and it may finally sink
 - c) Float
 - d) None of the above
- x) A rectangular block 2 m long, 1 m wide and 1 m deep floats in water, the depth of immersion being 0.5 m. If water weighs 10 kN/m3, then the weight of the bloc is
 - a) 5 kN
 - b) 10 kN
 - c) 15 kN
 - d) 20 kN

1st SEM. 2020 / 2021

SECTION II: ANSWER ANY TWO QUESTIONS

(30marks) **QUESTION TWO** (3 marks) a) What is a dimension? (3 marks) What is a unit? b) Name the four primary dimensions in fluid mechanics and give c) (12 marks) their symbols. Show that the porosity, n, can be given by the following expression (6 marks) d) $n = \frac{e}{1 + e}$

e) A fresh water lake has a maximum depth of 60 m, and the mean atmospheric pressure is 91 kPa. Estimate the mean absolute pressure in kPa at this depth. (6 marks)

QUESTION THREE

(30marks)

- a) Show that the volume of water V_w can also be given by the following expression. $V_w = \frac{S.e.V}{1+e}$ (10 marks)
- b) What is the best dimensions (flow depth y, cross sectional area A, and bottom width, b) for a rectangular brick channel designed to carry 5 m³/s of water in uniform flow with a slope of So = 0.001? Given that $A = 2y^2$, $R_h = 1/2y$ and n = 0.015. (15 marks)
- Suppose that SAE30 oil at 20°C with $\mu=0.29$ kg/(m.s) is being sheared. Compute (5 marks) the shear stress in the oil if v=3 m/s and h=2 cm; note that $\tau=\mu\,\frac{du}{dy}$

1st SEM. 2020 / 2021

QU I a)	QUESTION FOUR a) A soil sample has a water content of 8%. $G_m = 1.9$ and $G = 2.66$.		
	i)	Find the void ratio of the sample. Assume $W_s = 100 \text{ g}$.	(15marks)
	ii)	The degree of saturation, S.	(5 marks)
	iii)	The porosity, n	(5 marks)
	iv) How much water (in kilograms) would have to be added to 1 m ³ o soil in order to bring the water content to 13 %, assuming that the remains constant.		