

UNIVERSITY OF ESWATINI RE-SIT EXAMINATION PAPER

PROGRAMME: BSC AGRICULTURAL AND BIOSYSTEMS ENGINEERING (ABE)

COURSE CODE: ABE401

TITLE OF PAPER: RURAL WATER SUPPLY AND HYDROLOGY

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER THECOMPULSARY QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

1st SEM. 2019/2020

PAGE 2 OF 4

SECTION I: COMPULSARY

QUESTION 1

An earth dam is to be constructed to provide storage of at least 115, 000 m³ of irrigation water. The catchment from which the water will be obtained has a total size of 144 ha of sandy clay soil. The catchment is 800 m wide, and has a maximum length of 1800 m with a slope of 10 m fall over the full length. The area receives an average rainfall of 800 mm/year. The rainfall intensity for the catchment area is 100 mm/h with a runoff coefficient (C) of 0.36.

- A) i. Determine if the catchment is capable of providing enough water for the required storage of 115, 000 m³ (Table 1).
 - ii. Calculate the design peak runoff to accommodate the 100 mm/h storm.

(10 marks)

$$Q = \frac{CiA}{360} \qquad (1)$$

B) i. Name three (3) types of earth dams.

(6 marks)

ii. Briefly discuss the role of water storage in agricultural production.

(14 marks)

[40 marks]

Table 1. Runoff from catchment areas

Average rainfall, R (mm)	Total annual evaporation (mm)	Reliability (yrs out of 10)	Runoff as a % of average rainfall, Y			
			Shallow sand or loam soils (%)	Sandy clays (%)	Elastic clays	Clay pans inelastic clays or shales (%)
> 1100	-	8	10 – 15	0 – 15	15 – 20	15 - 25
	-	9	6.5 – 10	6.5 – 10	10 – 13	10 – 16.5
	-	8	10 – 12.5	10 – 15	12.5 – 20	15 - 20
	-	9	6.5 – 8	6.5 – 10	8-13	10 - 13
901- 1100	-	8	10-12.5	10 – 15	12.5 – 20	15 – 20
	-	9	6.5 – 8	6.5 – 10	8 – 13	10 - 13
501 – 900	< 1300	8	7.5 -10	7.5 – 15	7.5 – 15	10 - 15
		9	5 – 6.5	5 – 10	5 – 10	6.5 - 10
	1300-1800	8	5-7.5	5-12.5	5-10	10-15
		9	3-5	3-8	3-6.5	6.5-10
401-500	1300-1800	8	2.5-5	5-10	2.5-5	7.5-12.5
		9	1.5-3	3-6.5	1.5-3	5-8
250-400	< 1800	8	0-2.5	0-5	0-2.5	2.5-7.5
		9	0-1.5	0-3	0-1.5	1.5-5
	≥ 1800	8	0	0-2.5	0	2.5-5
		9	0	0-1.5	0	1.5-3

1st SEM. 2019/2020

PAGE 4 OF 4

SECTION II: ANSWER ANY TWO QUESTIONS

QUESTION 2

- A) Discuss briefly the data that you would require to determine the water demand requirements for a small rural community. (15 marks)
- B) A small rural community of 15, 000 people in the Highveld of Swaziland had water requirements of 40 l/h/d with a peak day factor (PDF) of 1.3. Calculate the design capacity for this community in m³/day and m³/h. (10 marks)
- C) What material would you recommend for the construction of the water storage tank for the community water supply and why? (5 marks)

[30 marks]

QUESTION 3

- A) i. Most NGO erected boreholes are reported to be failing in some rural areas in Eswatini. Briefly discuss how these boreholes fail. (10 marks)
 - Discuss briefly any two contingency water sources that you could recommend for domestic use.
 (5 marks)
- B) Discuss the following components of rural water supply:

i. Surface water. (5 marks)

ii. Rainwater harvesting. (5 marks)

iii. Rooftop rainwater harvesting. (5 marks)
[30 marks]

QUESTION 4

- A) i. State the "continuity principle" in hydraulics and explain briefly its relevance in rural water supplies. (10 marks)
 - ii. Water flows from a tank into a pipe at a rate of 1.0 l/s. Calculate the velocity of entrance into the pipe if the internal diameter of the inlet is 45 mm.

(5marks)

B) Describe with the aid of a diagram the three categories of small community water distribution. (15 marks)

[30 marks]