2<sup>nd</sup> SEM.2017/2018



## UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: BSC ABE 4

**COURSE CODE: ABE 403** 

TITLE OF PAPER: IRRIGATION DESIGN AND MANAGEMENT

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

### SECTION I COMPULSORY

#### **QUESTION 1**

a) Draw a clearly labelled crop coefficient (K<sub>c</sub>) curve.

[5 marks]

- Explain why a heat-unit based K<sub>c</sub> curve may accurately estimate crop evapotranspiration when compared to K<sub>c</sub> curve based on days elapsed. Also mention why such an assumption may not hold.
- c) Explain the conditions under which the Penman-Monteith Equation may better estimate evapotranspiration than either the Blaney-Criddle or Hargreaves equations.

  [5 marks]
- d) Explain how the Bowen Ratio Energy Balance System is used for direct measurement of evapotranspiration. [10 marks]
- e) Describe any one approach of determining dependable rainfall, and discuss why it is important in the design of an irrigation system. [10 marks]

# SECTION II ANSWER ANY TWO QUESTIONS

## **QUESTION 2**

- a) Describe the filtration system, providing a clear description of the various types of filters normally used and how they can be maintained to keep them at maximum performance.
   [15 marks]
- b) Determine the required diameter for an orifice emitter in a turbulent flow regime with a design discharge of 10 L/h and operating pressure head of 10 m. Assume a value of 0.6 for the orifice coefficient. [5 marks]
- c) Compute the required length of a long-path emitter for a system with a design discharge of 4 L/h and operating pressure of 10 m. Assume the standard value of 1.0 x 10<sup>-6</sup> m<sup>2</sup>/s for the kinematic viscosity of water. [10 marks]

#### **QUESTION 3**

- a) Clearly describe the Low energy precision application (LEPA) system for irrigation. [10 marks]
- b) A trial configuration of a hand move sprinkler has a lateral running downslope from a mainline along a constant grade of 0.005 m/m. The design operating pressure of the nozzle is 350 kPa. The lateral has a length of 450 m between the first and last sprinkler.
  - i) Compute the maximum allowable headloss due to friction. [5 marks]
  - ii) Determine the required pipe diameter to maintain the actual headloss within the allowable limit if the sprinkler spacing is 12 m and the design discharge is 0.315 L/s per sprinkler.

[5 marks]

- c) A pump is an important device in irrigation. Explain:
  - i) its function

[2 marks]

- ii) why pumps may be connected either in series or in parallel.
- [3 marks]
- iii) If the total pumping head required for a system is 38 m and the discharge is 15 L/s, calculate the power required, assuming 80 % efficiency. [5 marks]

## **QUESTION 4**

- a) Using diagrams showing the pattern of water application, explain how the operating pressure affects system uniformity. [15 marks]
- b) Describe how one can determine the sprinkler system uniformity using a grid of sprinklers, clearly explaining the equations used in the test.

[15 marks]

## F values for pipes with outlets

Table 1: 'F' Factors for sprinkler lateral design

| Number of | F    | Number of | F    | Number of | F    |
|-----------|------|-----------|------|-----------|------|
| outlets   |      | outlets   |      | outlets   |      |
| 1         | 1    | 16        | .365 | 31        | .349 |
| 2         | .625 | 17        | .363 | 32        | .349 |
| 3         | .518 | 18        | .361 | 33        | .348 |
| 4         | .469 | 19        | .360 | 34        | .348 |
| 5         | .440 | 20        | .359 | 35        | .347 |
| 6         | .421 | 21        | .358 | 36        | .347 |
| 7         | .408 | 22        | .357 | 37        | .346 |
| 8         | .398 | 23        | .356 | 38        | .346 |
| 9         | .391 | 24        | .355 | 39        | .345 |
| 10        | .385 | 25        | .354 | 40        | .345 |
| 11        | .380 | 26        | .353 | 50        | .343 |
| 12        | .376 | 27        | .352 | 60        | .342 |
| 13        | .373 | 28        | .351 | 70        | .341 |
| 14        | .370 | 29        | .350 | 80        | .340 |
| 15        | .367 | 30        | .350 | 90        | .339 |

## Headloss equations

The Hazen-Williams and Scobey equations are given by:

$$h_f = KL \frac{Q^{d_1}}{D^{d_2}}$$

Where h<sub>f</sub> = the friction loss in a pipe that conveys the flow throughout the length, m

L = the length of pipe, m

Q =the flow in L/s

D = the inside diameter of the pipe, mm

The value of K varies for the two equations. For the Hazen-Williams equation,  $K = 1.21 \times 10^{10} \, \text{C}^{1.852}$  where C is the pipe roughness coefficient. The exponents are given by  $d_1 = 1.852$  and  $d_2 = 4.85$  for Hazen-Williams equations. For the Scobey method  $K = 4.10 \times 10^6 \, \text{K}_s$  where  $K_s$  is Scobey's coefficient of retardation and the exponent values are  $d_1 = 1.9$  and  $d_2 = 4.9$ .

On average a roughness coefficient (C) of 130 is assumed for most materials.