

UNIVERSITY OF SWAZILAND

Re-Sit EXAMINATION PAPER 2018

PROGRAMME:

BSC. ABE

COURSE CODE:

ABE104

TITLE OF PAPER:

ENGINEERING MATHEMATICS

TIME ALLOWED:

TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: CALCULATOR

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER

QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION ONE: COMPULSORY

QUESTION ONE

- Evaluate the following, each correct to three (3) significant figures; (a) i) 4.7826 + 0.02713
- (2 marks)

ii) 21.93 x 0.012981

(2 marks)

 $631.7 - (6.21 + 2.95)^{2}$ $46.27^{2} - 31.79^{2}$ $3.72 e^{0.18}$ iii)

(2 marks)

iv)

(2 marks)

V)

(2 marks)

53.2 e^{-1.4} vi)

(3 marks)

vii)

- (2 marks)
- Evaluate the following, correct to three (3) decimal places; b)
 - $\left(\frac{3.60}{1.92}\right)^2 + \left(\frac{5.40}{2.45}\right)^2$ i)

(3 Marks)

 $\frac{15}{7.6^2-4.8^2}$ ii)

- (3 Marks)
- Remove the brackets and simplify the following expressions; c)
 - $2a [3{2(4a b) 5(a + 2b)} + 4a]$

(3 marks)

ii)

(4 marks)

 $\frac{(x^2y^{\frac{1}{2}})(\sqrt{x^3\sqrt{y^2}})}{(x^5y^3)^{1/2}}$ $\frac{1}{(\frac{4}{5}\times2^{\frac{1}{4}})} \div \left(\frac{1}{3} + \frac{1}{5}\right) + 2\frac{7}{24}$ iii)

- (3 marks)
- The electrical resistance R, of a piece of wire is inversely proportional to the crossd) sectional area A. When $A = 5 \text{ mm}^2$, R = 7.02 ohms. Determine the following;
 - i) The coefficient of proportionality

- (2 marks)
- ii) The cross sectional area when the resistance is 4 ohms.
- (3 marks)

- e) Solve the following inequalities
 - |3x + 1| < 4

(3 marks)

 $ii) \quad \frac{2x+3}{x+2} \le 1$

(2 marks)

SECTION II: ANSWER ANY TWO QUESTIONS

QUESTION TWO

- (a) Use the remainder theorem to determine the remainder when $(3x^3 2x^2 + x 5)$ is divided by (x + 2) (7 marks)
- (b) Resolve $\frac{11-3x}{x^2+2x-3}$ into partial fractions. (7 Marks)
- (c) Find the quadratic equation whose roots are 1/3 and -2. (6 marks)
- (d) Solve the following equations
- i) $X^2 6x + 9 = 0$ (4 marks)
- ii) Solve the following simultaneous equations 3p = 2q and 4p + q + 11 = 0 with a method of your choice. (6 marks)

QUESTION THREE

- (a) The Sag S at the center of a wire is given by the formula $S = \sqrt{\frac{3d(l-d)}{8}}$. Make *l* the subject of the formula and evaluate *l* when d = 1.75, and S = 0.80.
- (b) The extension X(m) of an aluminium tie bar of length L(m) and cross—sectional $A(m^2)$ when carrying a load of F Newtons is given by the modulus of elasticity $E = \frac{F.L}{A.x}$. Find the extension of the tie bar (in mm) when $E = 70 \times 10^9$ N/m, $F = 20 \times 10^6$ N, A = 0.1 m² and L = 1.4 m. (6 Marks)
- (c) Differentiate the following with respect to X; $Y = \frac{2}{3}X^3 \frac{4}{X^3} + 4\sqrt{X^5} + 7$ (8 Marks)
- (d) Integrate the following equation $\int \left(4 + \frac{3}{7}X 6X^2\right) dX$ (10 Marks)

QUESTION FOUR

- (a) i)Using SURD form, evaluate $\frac{3 Tan 60^{\circ} 2 Cos 30^{\circ}}{Tan 30^{\circ}}$ (4 Marks)
 - iii) Given a triangle ABC, find the length of the side BC given that B = 780, AC = 22.31 mm and AB = 17.92 mm. Also find the Area of the triangle. (6 marks)
- (b) Plot a graph of $Y = 2X^2$ between the values of -3 < X < 3 and hence solve the equation $2X^2 8 = 0$ and $2X^2 X 3 = 0$ (10 Marks)
- (c) Use the Newton Raphson method to determine the positive roots of the quadratic equation $5X^2 + 11X 17 = 0$, correct to 3 significant figures. Check the value of the roots by using the quadratic formula. (10 Marks)