

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2018

PROGRAMME:

BSC. ABE

COURSE CODE:

ABE104

TITLE OF PAPER:

ENGINEERING MATHEMATICS

TIME ALLOWED:

TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: CALCULATOR

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION ONE: COMPULSORY

QUESTION ONE

(a) Workout the following problems giving your answer in both **Standard form** and in **Engineering notation**;

i) $3.7 \times 10^2 + 9.81 \times 10^2$

(4 marks)

ii) $(4.5 \times 10^{-2})(3 \times 10^{3})$

(4 marks)

iii)
$$\frac{(2.4 \times 10^3)(3 \times 10^{-2})}{(4.8 \times 10^4)}$$

(6 marks)

iv) 0.00054 A

(4 marks)

b) Without using a calculator, find the value of the following leaving your answer as a fraction where possible;

i) $\frac{1}{3} - \left(\frac{2}{5} + \frac{1}{4}\right) \div \left(\frac{3}{8} \times \frac{1}{3}\right)$

(5 Marks)

ii)
$$\frac{3^2 \times 5^5}{3^4 \times 5^4 + 3^3 \times 5^3}$$

(6 Marks)

- c) If three people can complete a task in 4 hours, how long will it take 5 people to complete the same task assuming the rate of work remains constant? (5 marks)
- d) The electrical resistance R, of a piece of wire is inversely proportional to the cross-sectional area A. When $A = 5 \text{ mm}^2$, R = 7.02 ohms. Determine the following;

i) The coefficient of proportionality

(3 marks)

ii) The cross sectional area when the resistance is 4 ohms.

(3 marks)

SECTION II: ANSWER ANY TWO QUESTIONS

QUESTION TWO

- (a) Use the remainder theorem to determine the remainder when $(x^3 6x^2 + x 5)$ is divided by (x + 2) (7 marks)
- (b) Resolve $\frac{x^3 2x^2 4x 4}{x^2 + x 2}$ into partial fractions. (7 Marks)
- (c) The distance travelled by a car S meters is given by the formula $S = ut + 1/2at^2$. Find the time taken by the car to stop in an emergency if the distance S = 17.25 m, u = 9.50, and a = -2.50. (8 marks)
- e) Solve the equation; Log(x-1) + Log(x+1) = 2 Log(x+2) (6 marks)
- f) Evaluate 5.6 e⁻¹ correct to 2 decimal places (2 marks)

QUESTION THREE

- (a) Expand $e^x(x^2 1)$ as far as the term in X^4 (6 Marks)
- (b) The extension X(m) of an aluminium tie bar of length L (m) and cross –sectional A (m²) when carrying a load of F Newtons is given by the modulus of elasticity $E = \frac{F.L}{A.x}$. Find the extension of the tie bar (in mm) when $E = 70 \times 10^9$ N/m, $F = 20 \times 10^6$ N, A = 0.1 m² and L = 1.4 m. (6 Marks)
- (c) Differentiate the following with respect to X; $Y = \frac{2}{5}X^3 \frac{4}{X^3} + 4\sqrt{X^5} + 7$ (8 Marks)
- (d) Integrate the following equation $\int \left(4 + \frac{3}{7}X 6X^2\right) dX$ (10 Marks)

QUESTION FOUR

- a) Calculate the diameter of a solid cylinder which has a height of 82.0 cm and a total surface area of 2.0 m². (6 marks)
- b) Plot a graph of $Y = 2X^2$ between the values of -3 < X < 3 and hence solve the equation $2X^2 8 = 0$ and $2X^2 X 3 = 0$ (10 Marks)
- (d) Use the Newton Raphson method to determine the positive roots of the quadratic equation $5X^2 + 11X 17 = 0$, correct to 3 significant figures. Check the value of the roots by using the quadratic formula. (10 Marks)
- d) Evaluate $\frac{\log 25 \log 125 \frac{1}{2} \log 625}{3 \log 5}$ (4 marks)