

UNIVERSITY OF SWAZILAND RESIT EXAMINATION PAPER

PROGRAMME: ALL YEAR 1 PROGRAMMES (AGRICULTURE & CONSUMER SCIENCES)

COURSE CODE: ABE102

TITLE OF PAPER: PHYSICS

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION 1: COMPULSORY QUESTION

QUESTION 1

The work output

A 300 g object slides 80 cm along a horizontal tabletop. How much work is done in overcoming friction between the object and the table if the coefficient of kinetic friction is 0.20? [10 marks]

A hoisting machine lifts a 300 kg load a height of 8 m in a time of 20 s. The power b. supplied to the engine is 20 hp. Compute,

	i.	The work output	[5 marks]
	ii.	The power output and power input	[5 marks]
	iii.	The efficiency of the engine and hoist system	[10 marks]
c.		Define the following terms:	
	i.	Density	[2 marks]
	ii.	Hydrostatic pressure	[2 marks]
	iii.	Electric motor	[2 marks]
	iv.	Atmospheric pressure	[2 marks]
	v.	Transformer	[2 marks]

SECTION II: ANSWER ANY TWO (2) QUESTIONS

QUESTION 2

- One kilogram of steam at 100°C and 101 kPa occupies 1.68 m³.
 - What fraction of the observed heat of vaporisation of water is accounted for by the i. expansion of water into steam? [10 marks]
 - Determine the increase in internal energy of 1.0 kg of water as it is vaporised at ii. 100°C. [10 marks]
- b. Define Ohm's law as used in electricity. [5 marks]
- State the law of reflection of light c. [5 marks]

' QUESTION 3

a. A	transformer is	connected to 220 V	supply mains an	d the output is connected	ed to a 1.8
W (6.0 V)	rated lamp.				

i.	Name the type of this transformer, clearly state your reasons	[5 marks]
ii.	Calculate the ratio of the number of turns in the secondary coils to	the number of
	turns in the primary coils	[5 marks]
iii.	Calculate the normal working current of the lamp	[5 marks]
iv.	Calculate the resistance of the lamp	[5 marks]

b. Derive the dimensions of:

1.	Density	[3 mai
ii.	Pressure	[3 mar
iii.	Work	[4 mar

QUESTION 4

a.	State the three (3) equations of linear motion	[6 marks]
b.	State any two (2) useful functions of friction	[4 marks]

c. A stone is thrown vertically upward with an initial velocity of 100 m/s (assume symmetry). At the same instant another stone is thrown vertically downward from the top of a 280 m cliff with an initial velocity of 40 m/s, neglecting air friction,

1	•	Find the time when the stones pass each other	[10 marks]
i	i.	Find the height above the ground at which the stones pass each other	[5 marks]
i	ii.	When are the velocities of the stones the same? (time)	[5 marks]