

UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: ALL YEAR 1 PROGRAMMES (AGRICULTURE & CONSUMER SCIENCES)

COURSE CODE: ABE102

TITLE OF PAPER: PHYSICS

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION 1: COMPULSORY QUESTION

QUESTION 1

- a. Given that the velocity v of a liquid leaving a nozzle depends upon a pressure drop p and the density ρ . Using dimensional analysis, show that a relationship between v, p, and ρ can be established. [15 marks]
- b. A 3 cm cube of metal is suspended by a thread attached to a scale. The cube appears to have a mass of 47.3 g when measured submerged in water. What will its mass be when submerged in glycerine of a specific gravity of 1.26? [15 marks]
- c. How much heat is required to raise the temperature of 0.2 kg of aluminium from 18 °C to 65 °C, assume the specific heat capacity of aluminium to be 950 J/kg°C. [10 marks]

SECTION II: ANSWER ANY TWO (2) QUESTIONS

QUESTION 2

- a. Joe is driving his motorcycle along a straight road at a uniform velocity of 25 m/s when he suddenly sees a cow in the road directly in front of him at a distance of 110 m. It takes 0.7 s for his hand to squeeze the brake lever (the reaction time) and then his cycle slows down at -4 m/s².
 - (i) How far does he travel in coming to a stop (from the point where he first sees the cow)? [10 marks]
 - (ii) What should his reaction time be if he wanted to stop in a distance of exactly 110 m? [10 marks]
 - State the principle of conservation of energy and explain how this principle is applied when a ball is thrown vertically upwards.

6

QUESTION 3

- a. Write the expressions/or equations for determining the following:
 - (i) Density

[3 marks]

(ii) Specific weight/density

[3 marks]

(iii) Specific gravity

[4 marks]

- b. A 50 kg block rests on a sloping board and when the board is raised to make an angle of 30° to the horizontal the block begins to slide. Calculate:
 - (i) The coefficient of static friction between the block and the board.

[10 marks]

(ii) The amount of force necessary to move the block up the board at a uniform velocity.

Assume the dynamic coefficient is 80% of the coefficient of static friction.

[10 marks]

QUESTION 4

a. Two resistors of 6Ω and 10Ω are connected in series with a battery of 30 V as shown in the Figure.

Calculate:

	(i)	The current passing through the circuit	[5 marks]
	(ii)	Potential difference across each resistor	[5 marks]
	(iii)	Power dissipated by each resistor	[5 marks]
	(iv)	Total energy consumed in a 4-hour operation	[5 marks]
b.	Write the three (3) fundamental equations of linear motion		[10 marks]