

UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: BSC ABE III

COURSE CODE: ABE 304

TITLE OF PAPER: RURAL WATER SUPPLY AND HYDROLOGY

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION I: COMPULSORY

QUESTION 1

- A) Discuss briefly the two (2) most important sources of small rural community water supply in Swaziland. (5 marks)
- B) I. A small rural community of 10 000 people in the Highveld of Swaziland had water requirements of 40L/h/d with a peak day factor (PDF) of 1.2.
 Calculate the design capacity for this community in m³/day and m³/h.

(10 marks)

- II. What kind of material would you recommend to be used for the construction of the water storage tank for the community water supply? (5 marks)
- C) I. Derive the equation of the rate of discharge, Q, for a confined aquifer.

 (5 marks)
 - II. A well fully penetrates 25 m thick confined aquifer. After a long period of pumping at a constant rate of 0.05 m³/s, the draw down at distances of 50 m and 150 m from the well were observed to be 3 m and 1.2 m, respectively.
 - i. Calculate the hydraulic conductivity of the soil material. (5 marks)
 - ii. Determine the transmissivity of the aquifer. (5 marks)
 - iii. If you were supervising the drilling of this well, explain what these results mean.

 (5 marks)

 [40 marks]

2nd SEM. 2013/2014

PAGE 3 OF 6

SECTION II: ANSWER ANY TWO QUESTIONS

QUESTION 2

- A) Define run-off as used in small rural community water supply. (2 marks)
- B) Discuss briefly the factors that affect the quantity of run-off that could be harvested from a given catchment. (10 marks)
 - ii. What are the two (2) water bodies that could be used for rural water supply intake to channel water for domestic applications? (2 marks)
 - reduce the drawing in of silt and suspended matter. If the cross sectional area (A) of the channel was 900 m² with a discharge (Q) of 100 m³/s. Prove if this intake velocity was suitable using equation 1. (6 marks)

$$Q = V x A \qquad (1)$$

- C) i. Calculate the potential water yield that could be harvested from the roof by a household family size of 5 persons in the Lubombo Plateau (Table 1), with a rooftop area of 50.0 m² and per capita water requirements of 20 Litres/day.
 Equation 2 may be used for this calculation (5 marks)
 - ii. How many days will this water last the household? (5 marks)

Rooftop water yield = $A \times R \times C$ (2)

Where: A - Rooftop area (m^2)

R - Annual rainfall (mm)

C - Water yield (0.8 Litres/mm/m²)

[30 marks]

Table 1. Monthly mean rainfall data for Agro-ecological zones (1997-2007)

Month	Ecological Zones Mean Rainfall (mm)									
	Highveld	Middleveld		Lowveld		Lubombo				
		Upper	Lower	Eastern	Western	- Plateau				
January	166.7	133.30	130.18	125.47	126.20	167.96				
February	158.04	161.14	166.40	105.04	141.26	149.41				
March	130.65	97.74	181.01	69.04	95.31	109.95				
April	65.04	59.90	59.15	37.27	60.75	53.63				
May	22.07	7.14	20.16	12.14	14.95	13.08				
June	15.61	8.78	14.75	11.18	9.23	12.52				
July	12.54	5.05	9.02	9.64	7.28	14.25				
August	16.14	8.29	45.42	17.59	9.45	16.46				
September	44.17	30.23	27.23	22.73	28.13	35.26				
October	98.80	63.76	71.19	56.25	52.33	78.38				

Source: Meteorology Department, (2008)

QUESTION 3

- A) i. The Mdlwayiza canal in Malkerns, Swaziland uses the "continuity principle" to convey water by gravity over a distance of more than 14 km. Discuss briefly how this hydraulics principle works and explain its relevance in rural water supplies.
 (5 marks)
 - ii. Water flows from a tank into a pipe at a rate of 1.0 L/s. Calculate the velocity of entrance into the pipe if the internal diameter of the inlet is 45 mm. (5 marks)
 - iii. The pipe does not maintain its size as its outlet has a diameter of 50 mm; calculate the new velocity at that section of the pipe. (5 marks)
- B) Briefly discus the following concepts as used in rural water supply.

i.	Water harvesting.	(5 marks)
ii.	Water collected from rivers and streams.	(5 marks)
iii.	Ground water.	(5 marks)

[30 marks]

QUESTION 4

An earth dam is to be constructed to provide storage of at least 115, 000 m³ of irrigation water. The catchment from which the water will be obtained has a total size of 144 ha of sandy clay soil. The catchment is 800 m wide, and has a maximum length of 1800 m with a slope of 10 m fall over the full length. The area receives an average rainfall of 800 mm/year. The rainfall intensity for the catchment area is 100 mm/h with a runoff coefficient (C) of 0.36.

- A) i. Determine if the catchment is capable of providing enough water for the required storage of 115, 000 m³ (Table 2). (10 marks)
 - ii. Calculate the design peak runoff to accommodate the 100 mm/h stormusing equation 3. (10 marks)

$$Q = \frac{CiA}{360}$$
 (3)

- B) i. Name the three (3) most common types of earth dams. (5 marks)
 - ii. Briefly discuss the role of water storage in agricultural production.

(5 marks)

[30 marks]

Table 2. Runoff from catchment areas

Average rainfall, R (mm)	Total annual evaporation (mm)	Reliability (yrs out of 10)	Runoff as a % of average rainfall, Y			
			Shallow sand or loam soils (%)	Sandy clays (%)	Elastic clays	Clay pans, inelastic clays or shales (%)
> 1100	-	8	10 – 15	0 – 15	15 – 20	15 - 25
	-	9	6.5 – 10	6.5 – 10	10 – 13	10 – 16.5
	-	8	10 – 12.5	10 – 15	12.5 – 20	15 - 20
	-	9	6.5 – 8	6.5 – 10	8 – 13	10 - 13
901- 1100		8	10-12.5	10 – 15	12.5 – 20	15 – 20
	-	9	6.5 – 8	6.5 – 10	8 – 13	10 - 13
501 – 900	< 1300	8	7.5 -10	7.5 – 15	7.5 – 15	10 - 15
		9	5 – 6.5	5 – 10	5 – 10	6.5 - 10
	1300-1800	8	5-7.5	5-12.5	5-10	10-15
		9	3-5	3-8	3-6.5	6.5-10
401-500	1300-1800	8	2.5-5	5-10	2.5-5	7.5-12.5
		9	1.5-3	3-6.5	1.5-3	5-8
250-400	< 1800	8	0-2.5	0-5	0-2.5	2.5-7.5
		9	0-1.5	0-3	0-1.5	1.5-5
	≥ 1800	8	0	0-2.5	0	2.5-5
		9	0	0-1.5	0	1.5-3

Source: Nelson (1985)