

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

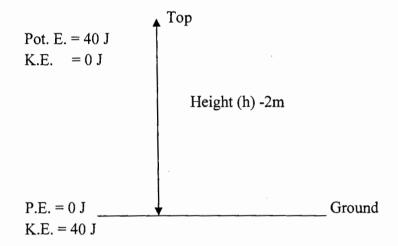
PROGRAMMES; AGRICULTURAL AND BIOSYSTEMS
ENGINEERING

COURSE CODE: ABE 101

TITLE OF PAPER: PHYSICS

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.


DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

PHYSICS FINAL EXAMINATION

QUESTION 1:

COMPULSORY

(a) State the principle of energy conservation and explain how this principle is applied when a ball is thrown vertically upwards, as shown on the diagram below. [10 marks]

- (b) An electric motor that has 95% efficiency uses 20A at 110V.
 - (i) What is the power output?

[5 marks]

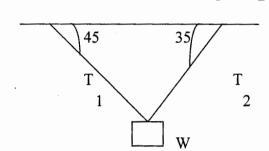
(ii) How many Watts are lost in thermal energy?

[5 marks]

(iii) How many calories of thermal energy are developed per second?

[10 marks]

- (c) Explain the characteristics of Resistance and how it differs between a [5 marks] series circuit and parallel circuit.
- (d) Define Ohm's Law


[5 marks]

QUESTION 2

(a) Circle the correct answer

[5 marks]

A traffic light of weight (w) is suspended from two wires as shown. Then tensions in the wires have magnitudes T and T = as shown

Which statement is true?

(i)
$$T = T = W$$

1 2

(ii)
$$T = T = W/2$$

1 2

(iii)
$$T + T = W$$

$$1 \quad 2$$

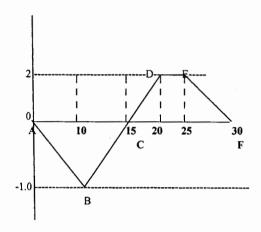
(iv)
$$T + T > W$$

1 2

(b) A 5000w heater is used for 10 hours heating a chicken shed in winter. What is the daily cost of the electrical energy transferred into heat, assuming that electricity costs 80c per kilowatt-hour (kWh)

[10 marks]

(c) An electric heating appliance should always be fitted with an earth connection for protection. What is protected by the earth connection?


[5 marks]

- (i) The cable connecting the appliance
- (ii) The fuse in the circuit
- (iii) The heating element of the appliance
- (iv) The person using the appliance
- (d) Describe the following terms and give their dimensions;

(i)	Speed		[2.5 marks]
(ii)	Velocity		[2.5 marks]
(iii)	Work		[2.5 marks]
(iv)	Electric charge		[2.5 marks]

QUESTION 3

The following velocity-time graph represents the movement of a car that was initially Travelling towards the East.

(a) At which stage did the car have a constant velocity?

[5 marks]

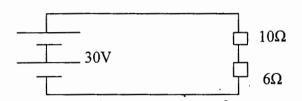
- (i) A-B
- (ii) B-C
- (iii) C-E
- (iv) D-E
- (v) E-F
- (b) What is the acceleration from E to F?

[5 marks]

- (i) 2.5 m/s
- (ii) -2.5 m/s
- (iii) 10.0 m/s
- (iv) -0.4 m/s
- (c) Describe how you would attempt to make:-
 - (i) A permanent magnet

[5 marks]

(ii) A temporary magnet


[5 marks]

(d) State the laws of reflection of light. Show that the image of an object In a plane mirror is as far behind as it is in front.

[10 marks]

QUESTION 4

Two resistors of 6Ω and 10Ω are connected in series with a battery of 30V [20 marks] terminal voltage as shown in fig below. Calculate –

(i)	Current passing through the circuit	[5 marks]
(ii)	Potential difference across each resistor	[5 marks]
(iii)	Power dissipated by each resistor	[10 marks]
(iv)	Total energy consumed in a 4-hr operation	[5 marks]
(v)	Total cost of operation for one (24 hrs) if E0-80 is the cost of 1 kWh	[5 marks]