

UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION PAPER

PROGRAMMES: BSc. ABE 3, and BSc LWM 3 OLD (T)

COURSE CODE: ABE 303

TITLE OF PAPER: FLUID AND SOIL MECHANICS

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER **QUESTIONS**

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

QUESTION 1

a. At the end of a channel is a sharp edged rectangular weir with a width of 400mm and a coefficient of discharge of 0.65. The water is flowing at a depth 0.16m above the base of the weir.

- i. Calculate the actual discharge from the rectangular weir. [5marks]
- ii. If this weir is replaced by a 90° V-notch weir with the same coefficient of discharge, what will be the necessary upstream depth of water to achieve the same discharge as the rectangular weir? [15marks]
- b. Define the following terms and outline their significance with regard to soil mechanics;

i. Shear strength

[10 marks]

ii. Mohr-Coulomb failure criterion

[10 marks]

QUESTION 2

a. Oil flows through a 25.0 mm diameter pipe with mean velocity of 0.3 m/s. Given that the viscosity $\mu = 4.8 \times 10^{-2} \ kg/ms$ and the density $\rho = 800.0 \ kg/m^3$, calculate:

- i. The friction head loss and resultant pressure drop in a 45.0 m length of pipe, and; [15 marks]
- ii. The maximum velocity and the velocity 5.0 mm from the pipe wall.

[15 marks]

QUESTION 3

A laboratory test carried out on an undisturbed sample of soil weighing 1.74 kg and having a volume of $1/1000 \, m^3$ determined the specific gravity of the solids to be 2.6 and the dry density of the solids to be 1500.0 kg/m^3 . Calculate;

1.	I ne moisture content	[5 marks]
ii.	The void ratio and porosity	[10 marks]
iii.	The saturated and submerged densities	[10 marks]
iv	The degree of saturation of the soil	[5 marks]

QUESTION 4

- a. Measurements carried out on the uniform flow of water in a long rectangular channel
- 3.0 m wide and with a bed slope of 0.001, revealed that at a depth of flow of 0.8 m the discharge of water was 3.6 m³/s. Estimate the discharge of water using;
 - i. The Manning equation

[10 marks]

ii. The Darcy equation

[10 marks]

b. What do 'total strength parameters' and 'effective strength parameters' designate?

[5 marks]

c. Define and outline the relevance of permeability in soil mechanics.

[5 marks]

APPENDIX

$$h_L = K' \left(\operatorname{Re}^{e-2} \left(\frac{L}{d} \right) \left(\frac{v^2}{2g} \right) = f \left(\frac{L}{d} \right) \left(\frac{v^2}{2g} \right)$$

$$t = \frac{A_1 A_2}{(A_1 + A_2) C_d A_0 \sqrt{2g}} \left[\sqrt{h_{initial}} - \sqrt{h_{final}} \right]$$

$$Q_{actual} = C_d A_1 A_2 \sqrt{\frac{2g\left[\frac{p_1 - p_2}{\rho g} + z_1 - z_2\right]}{A_1^2 - A_2^2}}$$

$$u_1 = \sqrt{\frac{2gh(\rho_{man} - \rho)}{\rho}}$$

$$Q_{actual} = C_d \frac{2}{3} B \sqrt{2gH^{3/2}}$$

$$Re = \frac{vL\rho}{\mu}$$

$$T = c_v \left(\pi dh\right) \frac{d}{2} + c_H \left(\pi \frac{d^2}{4}\right) \frac{2}{3}$$

$$Q_{actual} = C_d \frac{8}{15} \sqrt{2g} \tan \left(\frac{\theta}{2}\right) H^{5/2}$$

$$h_f = \frac{32\mu Lv}{\nu d^2}$$

$$Re = \frac{vR\rho}{\mu}$$

$$f = 64/\text{Re}$$

$$v^2 = \frac{8gRS}{f}$$

$$Q_{actual} = C_d \frac{8}{15} B \sqrt{2g} \tan \left(\frac{\theta}{2}\right) H^{5/2}$$

	B y y		
	Rectangle	Trapezoid	Circle
area, A	by	(b+xy)y	$\frac{1}{8}(\phi - \sin \phi)D^2$
wetted perimeter, P	b+2y	$b+2y\sqrt{1+x^2}$	$\frac{1}{2} \phi D$
top width, B	b	b+2xy	$\left(\sin\frac{\Phi}{2}\right)D$
hydraulic radius, R	$\frac{by}{b+2y}$	$\frac{(b+xy)y}{b+2y\sqrt{1+x^2}}$	$\frac{1}{4}\left(1-\frac{\sin\varphi}{\varphi}\right)D$
hydraulic mean depth, D	n y	$\frac{(b+xy)y}{b+2xy}$	$\frac{1}{8} \left(\frac{\varphi - \sin \varphi}{\sin(1/2\varphi)} \right) D$