

UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION PAPER

PROGRAMMES:

BSc. ABE 1, BSc. Agric. Econ and AgBMgt 1, BSc. Ag.Ed 1, BSc. Agron 1, BSc. An.

Sc 1, BSc. An. Sc 1 (Dairy Option), BSc. COS 1, BSc. COSE 1, BSc. FSNT 1,

BSc. Hort 1, BSc. TADM 1

COURSE CODE: ABE 101

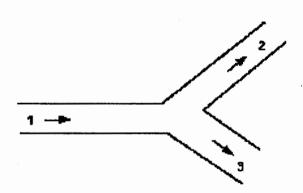
TITLE OF PAPER: PHYSICS

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER

QUESTIONS


DO NOT OPEN THIS PAPER UNTIL PERMISION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

QUESTION 1

- a. Explain the characteristics of 'Current' and how it differs between a Series circuit and a Parallel circuit. [5 marks]
- b. Explain the conditions of equilibrium. [5 marks]
- c. A 40 kg box is motionless. Tired out, you push it with force 100 N to try to start it moving. The coefficient for static friction between the floor and the box is $\mu = 0.45$.
 - (i) Compute μF_N . [5 marks]
 - (ii) Will the box move? [5 marks]
 - (iii) What is the magnitude of the force of friction acting on the box in this situation? [10 marks]
 - (iv) What is the moral of this problem? [5 marks]
- d. State the Archimedes principle and discuss its relevance in agriculture. [5 marks]

QUESTION 2

a. In the figure below, if *pipe 1* is 50 mm in diameter with a mean velocity of 2 m/s; *pipe 2* is 40.0 mm in diameter, and takes 30% of total discharge; *pipe 3* has a diameter of 60.0 mm. What are the values of discharge and mean velocity in each pipe? [15 marks]

- b. A cup containing 0.25 kg of water at 22.0 °C is placed in a microwave oven. After 60 s the temperature of the water is found to be 50 °C.
 - (i) How much heat flowed to the water?

[5 marks]

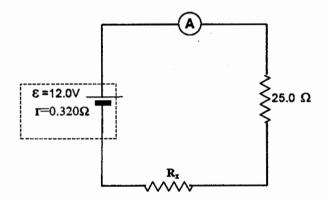
(ii) What was the average power delivered to the water?

[10 marks]

QUESTION 3

a. Given that the velocity v of a liquid leaving a nozzle depends upon a pressure drop p and the density ρ . Using dimensional analysis, show that a relationship between v, p, and ρ can be established. [5 marks]

b. A rock is thrown vertically upward with an initial speed of $100.0 \, m/s$ (assume symmetry). At the same instant another rock is thrown vertically downward from the top of a $280.0 \, m$ cliff with an initial speed of $40.0 \, m/s$, neglecting air friction,


i. Find the time when the rocks pass each other [10 marks]

ii. Find the height above the ground at which the rocks pass each other [5 marks]

iii. When are the speeds of the rocks the same? [10 marks]

QUESTION 4

a. The diagram below shows an electrical circuit which consists of an unknown resistor R_x connected in series with a 25.0 Ω resistor and a battery of emf of 12.0 V and internal resistance 0.32 Ω . An ammeter connected in the circuit reads 200 mA.

- i. A voltmeter is connected across the battery when the circuit is closed. What is its reading?[5 marks]
- ii. Calculate the value of the unknown resistor R_x . [5 marks]
- iii. Calculate the rate at which energy is used by the 25.0Ω resistor. [10 marks] b. State the principle of conservation of energy and explain how this principle is applied when a ball is thrown vertically upwards. [10 marks]